当前位置:淳美吧 > 智慧生活 > 心理 > 太空授课中的5个实验原理
手机版

太空授课中的5个实验原理

来源:淳美吧 阅读:3.3W 次
太空授课中的5个实验原理

中国航天史上首次太空授课于6月20日上午10时许开课,我国第一位“太空教师”王亚平在神舟十号上通过质量测量、单摆运动、陀螺运动、水膜和水球等5个物理实验进行太空授课,展示了失重环境下物体运动特性、液体表面张力特性等物理现象,并通过视频通话与地面课堂师生进行互动交流。

实验一:质量测量——牛顿第二定律

实验原理解读:这个实验生动地说明了牛顿第二定律的基本原理——“物体加速度的大小跟物体受到的作用力成正比,跟物体的质量成反比。”这是一个在一切惯性空间内普遍适用的基本物理定律,不因物体的引力环境、运动速度而改变,因此在太空和地面都是成立的。

实验二:单摆运动——太空失重

实验原理解读:实验中小球没有来回摆动、而是悬浮或者做圆周运动,是太空中的失重现象导致的。在地面上,一旦松手,在地球重力的作用下,小球会向下运动,而由于小球被细绳连接在支架上,它就会被细绳牵着来回摆动。但太空中没有重力作用,小球只会在原地悬浮。同样因为重力环境的不同,在太空中轻轻推小球一下,小球会在细绳的牵引下做圆周运动。而在地面上,需要给小球足够大的初速度,才能使它克服地球重力的阻碍,实现圆周运动。

实验三:陀螺运动——角动量守恒

实验原理解读:转动的陀螺具有定轴性,定轴性遵守角动量守恒原理——在没有外力矩作用的情况下,物体的角动量会保持恒定。航天员瞬时施加的干扰力不能产生持续的力矩,由于角动量守恒,旋转陀螺的旋转轴就不会发生很大改变。而这一点在地面上之所以很难实现,并不是因为角动量守恒定理不成立,而是因为陀螺与地面摩擦产生的干扰力矩等因素改变了陀螺的角动量,使其旋转速度逐渐降低,不能很好地保持旋转方向。

实验四五:制作水膜、水球——液体表面张力

实验原理解读:这两个实验均展示了液体表面张力的作用。受到内部分子的吸引,液体表面分子有被拉入内部的趋势,导致表面就像一张绷紧的橡皮膜,这种促使液体表面收缩的绷紧的力,就是表面张力。

表面张力现象在日常生活中非常普遍,比如草叶上的露珠、空气中吹出的肥皂泡等。地球引力使得肥皂泡上方变薄破裂而无法长久存在,而太空中的液体处于失重状态,表面张力不仅大显身手,还决定了液体表面的形状。水膜实验中,表面张力使水膜像橡皮膜一样搭在金属环里,并且比地面上形成的水膜面积更大、存在时间更长。同样,由于没有重力影响,航天员向水膜上不断注入水时,这些水就能够均匀分布在水膜周围,逐渐形成水球。

液体表面张力在航天活动中有重要应用。失重环境下,航天器推进剂贮箱中的液体燃料界面和气体界面不再是稳定的,可能产生液体迁移、气液混合等现象,导致推进剂无法正常供应。因此,科学家们制造了表面张力贮箱,利用表面张力推动液体推进剂流动,为动力系统提供满足要求的推进剂。

原理:太空测质量 天宫一号里的“质量测量仪”直接运用牛顿第二定律。王亚平介绍,太空测重仪通过“弹簧—凸轮”机构产生恒定力,把聂海胜拉回到初始位置。

就测得聂海胜撞向一个平面时的速度v,仪器又记录下了时间t,因此根据v=at计算出加速度a,再根据已知的弹簧回复力F,根据牛顿第二定律公式F=ma,算出聂海胜的质量74千克。

本文链接:https://www.chunmeiba.com/zhihuishenghuo/xinli/qxv68z.html

Copyright © 2024. 淳美吧 All right reserved. 浙ICP备20204785号-2

文字美图素材,版权属于原作者。部分文章内容由网友提供推送时因种种原因未能与原作者联系上,若涉及版权问题,敬请原作者联系我们,立即处理。